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Abstract

It has been documented that dietary copper (Cu) deficiency impairs mitochondrial respiratory function, which is catalyzed by

5 membrane-bound multiple protein complexes. However, there are few reports on the simultaneous analysis of Cu effect

on the subunit protein expression on all 5 protein complexes. The present study was undertaken to determine the effect of

Cu deficiency on each mitochondrial respiratory complex’s protein expression in rat heart tissue with western-blot analysis.

Male Sprague-Dawley rats were fed diets that were either Cu adequate (6.0 mg Cu/g diet, n¼ 5) or Cu deficient (0.3 mg Cu/g

diet, n¼ 5) for 5 wk. The monoclonal antibody-based western-blot analysis suggested that the protein levels of 39-kDa and

30-kDa subunits in complex I; 70-kDa and 30-kDa subunits in complex II; core I and core II subunits in complex III; and a and b

subunits of F1 complex in complex V in both high-salt buffer (HSB) and low-salt buffer (LSB) protein fractions from heart

tissue of Cu-deficient rats did not differ from those of Cu-adequate rats. However, the protein level of cytochrome c oxidase

(CCO) subunit (COX) I, COX Vb, and COX VIb subunits in complex IV (CCO) in both HSB and LSB protein fractions from heart

tissue of Cu-deficient rats was lower than those of Cu-adequate rats. Collectively, these data demonstrate that Cu deficiency

decreases each tested subunit protein expression of complex IV but not those of complex I, II, III, and V in mitochondrial

respiratory complexes. J. Nutr. 137: 14–18, 2007.

Introduction

Impaired mitochondrial function and energy production in
copper (Cu)-deficient hearts are implied by a number of reports
showing swelling and ultrastructural changes in cardiac mito-
chondria (1–4) and depression of cytochrome c oxidase (CCO)2

activity (5–7). Although ultrastructural changes and reduction
of CCO activity suggest that mitochondrial energy production is
impaired, early studies of cardiac mitochondrial function during
Cu deficiency showed no abnormalities in ADP:O ratios, ATP
concentrations, or respiration (8–10). However, more recent
studies have shown that Cu deficiency produces a slight de-
pression of mitochondrial ATP and phosphocreatine concentra-
tions, depressed respiration, and less efficient oxygen utilization
(11–16). These studies indicate that Cu deficiency produces
abnormalities in the electron transport chain and oxidative
phosphorylation in cardiac mitochondria.

Mitochondrial ATP synthesis is dependent on the transfer of
electrons between 4 oligomeric enzymes that comprise the
respiratory complexes of the mitochondrial electron transport
chain. These 4 enzymes are: NADH:ubiquinone oxidoreductase
(complex I), succinate:ubiquinone oxidoreductase (complex II),
ubiquinol:cytochrome c oxidoreductase (complex III), and ferro-
cytochrome c:oxygen oxidoreductase (complex IV, CCO). Elec-
trochemical energy derived from electron transfer between the
respiratory complexes and finally to molecular oxygen drives the
translocation of protons across the inner mitochondrial mem-
brane, which creates a transmembrane protein gradient and
membrane potential. The proton-motive force provided by the
gradient and membrane potential is utilized by F1F0 ATPase
(complex V) to synthesize ATP (17).

CCO is a cuproenzyme that serves as the terminal respiratory
complex (complex IV) of the mitochondrial electron transport
chain. The reduction of CCO activity in hearts of Cu-deficient
animals (5–7) is not an unexpected outcome because Cu is an
essential cofactor. However, additional mechanisms may also
contribute to the loss of cardiac CCO activity. It has been
reported that Cu deficiency reduces the content of CCO subunits
IV,V, and VIb (18–20), CCO protein, and heme associated with
cytochrome aa3 (21) in cardiac mitochondria. CCO deficiency
has also been reported in the hearts of Cu-deficient rat neonates
(22). Thus, defective CCO assembly or impaired holoenzyme
stability also may contribute to the decline in CCO activity
caused by Cu deficiency.
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Several reports indicate that Cu deficiency decreases the
activities of NADH cytochrome c reductase, representing
combined activities of complexes I and III, succinate cytochrome
c reductase, representing the combined activities of complexes II
and III (23,24) and alters the subunit content of F1F0 ATPase
(1,18,25). These findings indicate that in addition to its effect on
CCO, Cu deficiency may produce a more global effect on res-
piratory complexes involved in electron transport and oxidative
phosphorylation. Recent work with yeast, beef, and plants has
provided evidence that mitochondrial electron-transfer com-
plexes specifically interact to form supermolecular structures
called supercomplexes (26–28). Experimental findings have shown
that respiratory supercomplexes allow higher electron-transfer
rates (28,29). Therefore, the protein ratio of respiratory chain
complexes I:II:III:IV:V is critical for the assembly of respiratory
supercomplexes and optimization of mitochondrial electron
transport and oxidative phosphorylation. It is possible that
reduction in CCO protein or subunit content contributes to the
reported adverse effects of Cu deficiency on cardiac electron
transport, energy production, and complex activities by impair-
ing supercomplex formation. However, none of the previous
studies have made a systematic comparison of all 5 mitochon-
drial respiratory complexes I:II:III:IV:V in a single animal study,
which is the groundwork for studying the assembly of respira-
tory supercomplexes. Recent availability of monoclonal anti-
bodies (mAbs) against the subunit proteins of mitochondrial
respiratory complexes facilitates the study of subunit level ex-
pression during Cu deficiency (30). This study examined the
protein expression level of at least 2 key subunits for each res-
piratory complex and the data provide new insights into the
regulation of protein expression related to mitochondrial res-
piratory function of the Cu-deficient rat heart.

Materials and Methods

Animals and diets. Experiments were conducted in accordance with

the Guide for the Care and Use of Laboratory Animals (31) and

approved by the Animal Care Committee of the Grand Forks Human

Nutrition Research Center.
Twenty male, 3-wk old, weanling Sprague-Dawley rats (Charles

River/Sasco) were divided into 2 dietary groups. Diets were composed of

940 g Cu-free, iron (Fe)-free basal diet (catalogue no. TD 84469, Teklad

Test Diets); 50 g safflower oil; and 10 g Cu-Fe mineral mix per kg of diet.
The basal diet was a casein- (200 g/kg), sucrose- (386 g/kg), cornstarch-

(295 g/kg) based diet containing all known essential vitamins and

minerals except Cu and Fe (32). The mineral mix contained cornstarch
and Fe with or without Cu and provided 0.22 g ferric citrate (16% Fe)

and either 0 or 24 mg added CuSO4�5H2O/kg of diet. These formula-

tions were intended to provide a severely Cu-deficient diet (CuD) con-

taining only Cu present in the basal diet and a Cu-adequate diet (CuA)
containing 6 mg/kg diet. Triplicate dietary analyses (see below) of each

diet indicated mean Cu concentrations of 0.16 and 6.26 mg Cu/kg diet

for the CuD and CuA diets, respectively.

Analysis of dietary Cu was performed by dry ashing of the diet
sample (33), dissolution in aqua regia, and measurement by atomic

absorption spectroscopy (model 503, Perkin Elmer). The assay method

was validated by simultaneous assays of a wheat flour reference standard
(National Institute of Standards and Technology) and a dietary reference

standard (HNRC-1A) that was developed by the Grand Forks Human

Nutrition Research Center.

After the rats consumed their respective diets for 5 wk, each rat was
anesthetized with an intraperitoneal injection of sodium thiobutabarbi-

tal (Inactin, Research Biochemicals International; 100 mg/kg body wt).

Blood was withdrawn from the inferior vena cava into EDTA-treated test

tubes and hemoglobin and hematocrit were determined with a cell
counter (Cell-Dyn, Model 3500CS, Abbott Diagnostics). The median

lobes of the liver (10 rats from each dietary group) and hearts (5 rats

from each dietary group) were excised for mineral assays. Liver/heart Cu

concentrations were determined by lyophilizing and digesting organ
samples with nitric acid and hydrogen peroxide (34) and measuring Cu

concentration by inductively coupled argon plasma emission spectros-

copy (Model 1140, Jarrell-Ash).

Hearts from 5 rats from each dietary group were excised and placed
in PBS on ice for subsequent protein extraction, described below.

Preparation of low-salt buffer and high-salt buffer protein

extracts. Unless otherwise indicated, all operations were performed at
4�C. Low-salt buffer (LSB) and high-salt buffer (HSB) protein extracts

were prepared by a generally accepted procedure (35) as modified for use

in a previous study (20). Fresh tissues from heart muscle were finely
minced in PBS and centrifuged at 532 3 g; 5 min. The pellets were lysed

in lysis buffer [20 mmol/L HEPES, pH 7.6, 20% glycerol, 10 mmol/L

NaCl, 1.5 mmol/L MgCl2, 0.2 mmol/L EDTA, 1 mmol/L dithiothreitol,

1 mmol/L phenylmethylsulfonyl fluoride, and leupeptin (10 mg/L)] in
a Wheaton Dounce homogenizer. Nuclei and other organelles were

collected by centrifugation at 532 3 g; 5 min and supernatant was

designated the LSB protein extract and kept at 280�C. Nuclei and

organelles were suspended in lysis buffer containing 500 mmol/L NaCl,
gently rocked for 1 h, and then centrifuged at 15,000 3 g; 15 min. The

supernatant was designated the HSB protein extract and kept at 280�C.

The LSB and HSB extracts represent the total cellular protein, and data
from parallel analysis of both LSB and HSB extracts may be more

informative than that of a single whole cell extract.

Western-blotting analysis. Equal amounts of HSB or LSB protein
extract (2.5 mg/lane) were resolved over 4–20% Tris-glycine gradient

gels under denaturing and reducing conditions and electroblotted onto

polyvinylidene difluoride membranes (Invitrogen). The identical SDS

gels (after transferring protein to polyvinylidene difluoride membrane)
were stained with Coomassie Blue to ensure equal loading, because there

was always a certain percentage of protein still remaining in these gels

(20,36). Membrane blots were blocked in PBS – 0.05% Tween (v:v)

supplemented with 1% (wt:v) nonfat dry milk (BioRad) at room tem-
perature (RT) for 1 h. Membranes were probed with antibodies against

39-kDa and 30-kDa subunits in complex I; antibodies against 70-kDa

and 30-kDa subunits in complex II; antibodies against core I and core II
subunits in complex III; antibodies against CCO subunit (COX) I, COX

Vb, and COX VIb subunits of complex IV; antibodies against a and b

subunits of F1 complex in complex V (Molecular Probes) for 1 h at RT

according the manufacturer’s suggested concentration. Membranes were
washed (2 3 1 min, 1 3 15 min, and 2 3 5 min) and then incubated with

an anti-mouse (1:3000 dilution) horseradish peroxidase–conjugated

secondary antibody (Santa Cruz Biotechnology) in blocking solution for

1 h at RT. Blots were washed as above and proteins were detected using
an ECL plus kit (Amersham Pharmacia Biotech) with the Molecular

Dynamics Image-Quant system.

Statistical analysis. Results are given as means 6 SD. Student’s t test

for unequal variances was used to compare data between the 2 dietary

treatments. Differences with a P-value , 0.05 were considered signif-

icant.

Results

Body weight, hematocrit, hemoglobin, liver Cu, and heart Cu
were lower in CuD than in CuA rats (Table 1). In contrast, the
ratio of heart weight vs. body weight was higher in CuD than in
CuA rats. These data are characteristic of Cu-deficient rats, as
we have previously reported (20,36–38). To determine the effect
of Cu deficiency on the protein expression of mitochondrial
complexes I, II, III, IV, and V, we systematically examined all
5 complexes with western-blotting analysis. Cu deficiency
produced no changes on the protein expression of 39 kDa and
30 kDa in complex I (Fig. 1, Table 2); 70 kDa and 30 kDa in

Cu status alters Complex IV expression 15

 at U
S

D
A

, N
ational A

gricultural Library on F
ebruary 12, 2008 

jn.nutrition.org
D

ow
nloaded from

 

http://jn.nutrition.org


complex II (Fig.1, Table 2); core I and core II subunits in
complex III (Fig. 1, Table 2); or a and b subunits in complex V
(Fig. 1, Table 2). However, Cu deficiency decreased the protein
expression of COX I, COX Vb, and COX VIb subunits in
complex IV by 44.2, 40.2, and 61.8%, respectively, in the HSB
fraction and by 59.1, 51.9, and 35.8%, respectively, in the LSB
fraction (Fig. 1, Table 2).

Discussion

To our knowledge, this study is the first to determine the effect of
Cu deficiency on subunit content of all 5 respiratory complexes

in cardiac mitochondria in a single experiment. Our study
showed that of the 5 cardiac mitochondrial respiratory com-
plexes examined, Cu deficiency significantly lowered only the
subunits of CCO (complex IV). This finding agrees with a pre-
vious observation that CCO protein in heart mitochondria is
reduced by Cu deficiency, whereas protein content of complexes
I, III, and V are unaffected (21). The affected subunits in our
study included mitochondrial-encoded COX I and nuclear-
encoded COX Vb and COX VIb. This finding is somewhat in
contrast to previous research showing that Cu deficiency
primarily lowered nuclear-encoded subunits of CCO (1). How-
ever, the finding is consistent with a recent study showing that
levels of mitochondrial- and nuclear-encoded CCO subunits are
reduced in cardiac mitochondria of Cu-deficient rat neonates
(22) and with a recent study showing that Cu deficiency
decreases the protein level of subunit VIb of CCO but not the
protein level of subunit IP of complex II (20). It cannot be
concluded that Cu deficiency specifically affects only CCO
subunits, because the effect of Cu deficiency was examined in
relatively few of the large number of subunits composing each of
the 5 respiratory complexes (39). However, because mitochondrial-
and nuclear-encoded subunits of CCO were both lowered, it
may be concluded that a deficiency in complex IV content occurs
in the hearts of Cu-deficient rats.

Mechanisms for CCO deficiency caused by Cu deficiency are
not clear. However, an early study with Cu-deficient yeast
indicated that Cu is important for assembly of CCO (40).
Further support for impaired CCO assembly during Cu defi-
ciency is provided by studies showing that cytochrome aa3
content is diminished in Cu-deficient rats (21,41). In yeast, the
synthesis of heme a is not affected by intracellular Cu levels
(42), suggesting that the reduction in cytochrome aa3 observed
in Cu-deficient rats is a consequence of improper trafficking and
incorporation of hemes a and a3 during CCO assembly. Our
data suggest that the diminished content of COX I in Cu-
deficient rats contributes to the reduction of cytochrome aa3,
because heme a and a3 are located in the COX I subunit of CCO
(43). Thus, our findings, together with the earlier data and data
from a study showing that Cu deficiency reduces the content of
CCO protein in the heart (21), indicate that Cu deficiency
impairs the assembly of fully functional CCO in heart mito-
chondria.

CCO assembly has several sequential stages for the insertion
of prosthetic groups and subunit associations. Cu delivery to the
apoform of COX I occurs during the first stage of CCO assembly
(44,45) and limited Cu availability due to Cu deficiency may
impair this stage of assembly. Incomplete assembly of COX I can
be detrimental to the complete assembly of the holoenzyme.
Mitochondria have evolutionarily conserved metalloproteinases
that remove nonassembled polypeptides and prevent their
accumulation in the inner membrane (46). Thus, incompletely
formed COX I in Cu-deficient animals may be degraded, causing
an overall reduction in COX I content in the mitochondria. Also,
in yeast, accumulation of unassembled COX I halts the synthesis
of COX I through feedback inhibition of COX I gene translation

TABLE 1 General features of Cu-adequate and Cu-deficient rats1

Diet Body wt, g Heart/Body,2 g/kg Hemoglobin, g/L Hematocrit Heart Cu,2 nmol/g dry tissue Liver Cu, nmol/g dry tissue

CuD 262.6 6 27.9* 5.30 6 1.07* 70.42 6 16.0** 0.225 6 0.048** 89.6 6 17.0** 13.1 6 3.9**

CuA 299.3 6 21.1 3.49 6 0.29 142.8 6 4.08 0.437 6 0.015 310.3 6 11.2 176.4 6 11.3

1 Values are means 6 SD, n ¼ 10. *Different from CuA, *P , 0.02, **P , 0.0001, n ¼ 5.
2 n ¼ 5.

Figure 1 Effect of Cu deficiency on the protein expression mitochondrial

respiratory complexes. Western-blotting analysis of HSB and LSB heart-protein

extracts from rats fed either a CuD or a CuA for 5 wk (5 rats per group). Each

complex protein profile was done on individual membranes, and each lane was

loaded with 2.5 mg of protein and individual subunits were detected by probing

the blot with subunit-specific antibodies. The molecular weights of the immuno-

reactive bands were estimated from regression analysis using prestained

molecular markers (Invitrogen).

16 Zeng et al.
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(47). If a similar feedback mechanism exists in mammals, then
reduced COX I content in Cu-deficient rats may occur through a
combination of degradation and lower COX I protein synthesis
because of lower incorporation of Cu into COX I during the
early stage of CCO assembly. The reduction in nuclear encoded
subunits in Cu-deficient rats may then occur, because less COX I
is available for interaction with the nuclear encoded subunits
during a later stage of CCO assembly.

The deficiency of CCO in cardiac mitochondria caused by
poor Cu status may impair structural-functional associations
between respiratory complexes that optimize electron transport.
Since the first isolation of respiratory-chain complexes over 40 y
ago (39), the concepts of how they are arranged within the
membrane have evolved. In particular, several of the respiratory
complexes specifically interact to form supermolecular struc-
tures termed supercomplexes (26,27). In mitochondria from
beef heart, interactions between complexes I, III, and IV lead to
the formation of supercomplexes, termed respirosomes (28).
The supercomplexes detected in bovine heart mitochondria
contain a complex I monomer, a complex III dimer, and a
variable copy number of complex IV. The major supercomplex
representing .50% of the total complex I in heart mitochondria
has only 1 copy of complex IV, i.e. I1III2IV1 (27). Several roles
have been proposed for respiratory supercomplexes. These
include substrate channeling, catalytic enhancement, sequestra-
tion of reactive intermediates (28), stabilization of protein
complexes (48), increasing the capacity of the inner mitochon-
drial membrane for protein insertion (27,28), and generating
mitochondrial cristae morphology (49). Thus, impairment of
supercomplex assembly or altered stoichiometric relations be-
tween complexes I, III, and IV in the supercomplexes may in-
fluence mitochondrial electron transport and morphology.

The importance of complex IV to the activities of complexes I
and III following their assembly into supercomplexes has
recently been demonstrated (50). The activity of complex I in
supercomplex I1III2 was ;40% of that in supercomplex
I1III2IV1. Complex III activity in supercomplex I1III2 was only
;6% of that in supercomplex I1III2IV1. Although supercomplex
assembly and stoichiometry were not investigated in this study,
it is conceivable that complex IV deficiency caused by Cu
deficiency could limit the assembly of supercomplex I1III2IV1

and prevent complexes I and III from attaining their optimal
activities. Limitation in the assembly of supercomplex I1III2IV1

during Cu deficiency is consistent with the loss of complex I-III
activity previously reported in Cu-deficient HL-60 cells (23) and
hepatic mitochondria of Cu-deficient rats (24). However, rea-
sons for complex IV deficiency during Cu deficiency and the
impact of complex IV deficiency on supercomplex formation
remain to be elucidated.

In summary, our results demonstrate that Cu deficiency de-
creases each tested subunit protein expression (mitochondrial-
and nuclear-encoded subunits) of complex IV but not those of
complex I, II, III, and V in mitochondrial respiratory complexes
and lay the groundwork for studying Cu regulated-assembly of
respiratory supercomplexes.
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